Fungalpedia – Note 130 Boeremia

 

Boeremia Aveskamp, Gruyter & Verkley

Citation when using this entry: Aumentado et al. in prep – Fungalpedia, plant pathogens. Mycosphere.

Index FungorumFacesoffungiMycoBankGenBank, Fig *.

Ascomycota, Pezizomycotina, Dothideomycetes, Pleosporomycetidae, Pleosporales, Didymellaceae

Boeremia was introduced by Aveskamp et al. (2010) to accommodate phoma-like species that share morphological similarities with Phoma exigua. This genus is typically characterized by variable-shaped and sized pycnidial conidiomata, mostly globose to subglobose, smooth or with few mycelial outgrowths on the agar surface or immersed. These pycnidia can be solitary or confluent, with 1–2(–3) ostioles that are apapillate or papillate. When mature, the ostioles are internally lined with papillate hyaline cells. The pycnidial wall consists of pseudoparenchymatous tissue, composed of 2–8 cell layers, with the outer 1–3 layers being brown pigmented. The conidiogenous cells are phialidic, hyaline, simple, smooth, ampulliform to doliiform. The conidia vary in shape and are hyaline, thin-walled, smooth, and mainly aseptate, but occasionally 1(–2)-septate conidia may be found. Pseudothecia are only rarely observed in one species in vivo, and they are subglobose. The asci are cylindrical or subclavate, always 8-spored and biseriate whereas ascospores are ellipsoid and uniseptate (Jayawardena et al. 2019Jayasiri et al. 2017, Aveskamp et al. 2010Boerema 2004).

This genus is accepted in Didymellaceae (Hongsanan et al. 2020Wijayawardene et al. 2022). Boeremia can be distinguished from other genera in Didymellaceae based on the morphology of its ostiole. Its ostioles have a smooth lining and distinct hyaline cells surrounding the ostiolar openings. Moreover, these species produce fewer conidia in culture compared to the host (Aveskamp et al. 2010). There are 22 species associated with Boeremia, identified through a combination of morpho-molecular sequence data of recommended genetic markers, internal transcribed spacer (ITS) region, 28S ribosomal RNA gene (LSU), RNA polymerase II second largest subunit (RPB2), β-tubulin (β-tub), and translation elongation factor 1-alpha (tef1-α) (Jayawardena et al. 2019Jayasiri et al. 2017Marin-Felix et al. 2017, Chen et al. 20152017Aveskamp et al. 2010Berner et al. 2015).

Boeremia is a ubiquitous necrotrophic plant pathogen that can affect all foliar parts of a plant (Berner et al. 2015You et al. 2016Zhao et al. 2016Gai et al. 2016, Grinbergs et al. 20142016). It causes dark brown sunken lesions at the base of the plant, which eventually expand to girdle the stem, resulting in yellowing and wilting of older leaves, ultimately leading to the death of the plant. In the case of fruit infection, it begins as water-soaked lesions that rapidly progress into sunken brown/black/gray lesions with concentric rings. Leaf lesions, on the other hand, start as small spots and develop into brown/ gray lesions with concentric rings (Zhao et al. 2016Jones et al. 2011). Pathogenicity studies have been conducted on Abelmoschus esculentus (Zhao et al. 2016), Coffea arabica (Núñez et al. 2011), Rhaponticum repens (Berner et al. 2015), Phaseolus spp. (Gorny et al. 2015Ríos et al. 2014Li et al. 2012), and Pyrethrum sp. (Zhao et al. 2016) to confirm its pathogenicity on the respective hosts. A study by Berner et al. (2015on host range, disease incidence, and severity of B. rhapontica demonstrated that its capacity to infect is confined to a very specific range of hosts within the Rhaponticum group. In contrast, other weed species that were examined displayed a maximum severity of 20% (Berner et al. 2015Hidalgo et al. 2006). Whereas B. exigua has been documented causing leaf spot Panax japonicus infecting around 95% of plants in the field and resulting in substantial necrotic lesions on the leaves with elliptical and irregularly shaped margins at the leaf tip (You et al. 2016). Another study of B. exigua on Cichorium intybus induced dark, firm, sunken lesions on the root. As the disease progresses, these lesions transform into cavities that are black on the crown of the plant resulting in yield reductions of up to 31% (Grinbergs et al. 20142016). Boeremia also can be found as saprobes on various plant species including Chamaedaphne calyculata, Cheiranthus cheiri, Crinum powellii, Cynara scolymus, Dactylis purpurea, Dahlia sp., Digitalis sp., Foeniculum vulgare, Forsythia sp., Fraxinus excelsior, Hedera helix, Hydrangea paniculata, Galium sp., Ipomoea batatas, Lamium maculatum, Lathyrus sp., Leonurus cardiaca, Linum usitatissimum, Lonicera sp., Lycopersicon esculentum, Malus domestica, Melissa officinalis, Mentha sp., Nemophila insignis, Nerium oleander, Nicotiana tabacum, Origanum dubium, Oxycoccus macrocarpus, Philadelphus sp., Phlox sp., Pisum sativum, Populus euramericana, Salix sp., Sambucus nigra, Sedum spp., Solanum tuberosum, Syringa vulgaris, Tanacetum cinerariifolium, Trachelospermum jasminoides, Ulmus sp., Veronica officinalis, Viburnum opulus, and Vitis sp. (Farr & Rossman 2023). 

Type species: Boeremia exigua (Desm.) Aveskamp, Gruyter & Verkley

For other species: Species Fungorum, search Boeremia for names     

 

References

Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM et al. 2010 – Highlights of the 

 Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean 

           genera. Studies in Mycology 65(1), 1–60. 

Berner D, Cavin C, Woudenberg JH, Tunali B et al. 2015 – Assessment of Boeremia exigua var. 

rhapontica, as a biological control agent of Russian knapweed (Rhaponticum repens). Biological Control 81, 65–75.

Boerema GH ed., 2004 – Phoma identification manual: differentiation of specific and 

infra-specific taxa in culture. CABI.

Chen Q, Jiang JR, Zhang GZ, Cai L et al. 2015 – Resolving the Phoma enigma. Studies in 

mycology 82, 137–217.

Chen Q, Hou LW, Duan WJ, Crous PW et al. 2017 – Didymellaceae revisited. Studies in 

Mycology 87(1), 105–159.

Farr DF Rossman AY. 2023 – Fungal databases. U.S. National Fungus Collections, ARS, USDA. 

https://nt.ars-grin.gov/fungaldatabases/

Gai YP, Ma HJ, Chen XL, Chen HH et al. 2016 – Boeremia tuber rot of sweet potato caused by 

B. exigua, a new post-harvest storage disease in China. Canadian Journal of Plant Pathology 38(2), 243–249.

Grinbergs DE, France RA. 2014 – Black root rot of industrial chicory (Cichorium intybus L. var. 

sativum) in Chile caused by Boeremia exigua var. exigua. Phytopathology 104(11), 47. 

Grinbergs D, France A, Varrelmann M. 2016 – First Report of Boeremia exigua var. exigua (syn. 

Phoma exigua var. exigua) causing black root rot on Industrial Chicory (Cichorium intybus var. sativum) in Chile. Plant Disease 100(11), 2328.

Gorny AM, Kikkert JR, Dunn AR, Dillard HR et al. 2015 – Tan spot of lima bean caused by 

Boeremia exigua var. exigua in New York State, USA. Canadian Journal of Plant Pathology 37(4), 523–528.

Hidalgo O, Garcia-Jacas N, Garnatje T, Susanna A. 2006 – Phylogeny of Rhaponticum 

(Asteraceae, Cardueae–Centaureinae) and related genera inferred from nuclear and chloroplast DNA sequence data: taxonomic and biogeographic implications. Annals of Botany 97(5), 705–14.

Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN et al. 2020 – Refined families of 

Dothideomycetes: Orders and families incertae sedis in Dothideomycetes. Fungal Diversity 105, 17–318.

Jayasiri SC, Hyde KD, Jones EBG, Jeewon R et al. 2017 – Taxonomy and multigene 

phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). Mycosphere 8(8), 1080–1101.

Jayawardena RS, Hyde, KD, Jeewon R, Ghobad-Nejhad M et al. 2019 – One stop shop II: 

taxonomic update with molecular phylogeny for important phytopathogenic genera: 26–50. Fungal Diversity 94, 41–129.

Jones SJ, Hay FS, Harrington TC, Pethybridge SJ. 2011 – First report of Boeremia blight caused 

by Boeremia exigua var. exigua on pyrethrum in Australia. Plant Disease 95(11), 1478–1478.

Li YP, You MP, Finnegan PM, Khan TN et al. 2012 – First report of black spot caused by 

Boeremia exigua var. exigua on field pea in Australia. Plant Disease 96(1), 148–148.

Ligarreto G, Gutiérrez LNG, Ladino CCP. 2023 – Differential responses of Phaseolus spp. 

against Black node disease (Boeremia noackiana). Bragantia 82, e20220225.

Marin-Felix Y, Groenewald JZ, Cai L, Chen Q et al. 2017 – Genera of phytopathogenic fungi: 

GOPHY 1. Studies in mycology. 86, 99–216.

Núñez M, Mejía L. 2021 –  First report of Boeremia exigua, as a pathogen causing Melt disease, 

          in coffee plantations (Coffea arabica variety geisha) in the highlands of Panama. In 

          National Congress of Science and Technology–APANAC 315–322.

Ríos MDK, Viteri RSE,   Delgado HH 2014 – Agronomic evaluation of advanced common 

          climbing bean Phaseolus vulgaris L. lines in Paipa, Boyaca. Revista de Ciencias                  

          Agrícolas 31(1), 42–54.

Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M et al. 2022 – Outline of Fungi and fungus-like taxa–2021. Mycosphere 13(1), 53–453.

You JM, Wang QH, Wang GJ, Lin XM et al. 2016 – First report of Phoma exigua causing leaf 

spot on Japanese ginseng (Panax japonicus) in China. Plant Disease 100(2), 534.

Zhao Q, Xie XW, Shi YX, Chai AL, et al. 2016 – Boeremia leaf and fruit spot of okra caused by 

Boeremia exigua in China. Canadian Journal of Plant Pathology 38(3), 395–399.

Entry by

Herbert Dustin R. Aumentado, Center of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai, Thailand 

 

Edited by Ruvishika S. Jayawardena & Kevin D. Hyde